TITUS identifies five reasons data protection strategies will fail without machine learning

Human error, complex global regulations and a deluge of data continue to challenge data protection and security initiatives worldwide.

Johannesburg, 14 May 2019
Read time 3min 30sec

Facing a growing cascade of regulations and public pressure, organisations know that having a strong, end-to-end data protection strategy is a critical priority.

That said, as organisations continue to heavily invest in data protection solutions, many still struggle to achieve that goal. The challenges organisations commonly face become more pressing and complex, yet the resources and time available to solve them remain static. The answer is something many organisations have done to address similarly complex challenges in data management and data analysis: the adoption of machine learning capabilities.

TITUS, a leading provider of data protection solutions and a Blackstone portfolio company, has identified five common reasons data protection strategies fail without implementing machine learning.

Five reasons machine learning is critical to a successful data protection strategy

1. Human beings make mistakes. As end-users create the data an organisation seeks to protect, the belief is they are the best source to analyse how valuable their data is and the best security to apply. However, this isn't always true. End-users can make mistakes. Many times, this means they may not apply stringent enough protection to their data or, more commonly, apply strict protections to data that isn't critical to the organisation.

2. More global regulations create complexity and confusion. The introduction of the General Data Protection Regulation (GDPR) sparked a worldwide movement to address growing public concern as to how businesses treat sensitive and/or personal data. While this is a positive step in ensuring businesses become good data stewards, it also creates complexity, as these businesses must understand what sensitive data they have, where it resides, and how it is protected to ensure they are compliant with a growing list of regulations. As each regulation has unique attributes, ensuring compliance on a continuous basis remains a significant challenge.

3. Explosion of data is difficult to identify and manage. Multiple sources indicate the amount of data created and consumed daily will continue to increase exponentially for the foreseeable future. Organisations continue to heavily invest in technology to manage and analyse this data, but protecting this data remains challenging.

4. Traditional solutions are often inaccurate. Existing traditional methods to identify and apply context to data include regular expressions for data like SSNs or credit card numbers. Though these are widely used, organisations regularly report issues with accuracy and false positives. These methods are limited in terms of what data can be reported against, creating gaps in organisational knowledge as to what data is truly sensitive.

I hear from businesses worldwide that data is one of their most important assets, yet many continue to struggle with data protection, said David Land, VP of Sales, TITUS. "While a data protection strategy centred on users is effective, it's no longer enough. Augmenting this strategy with machine learning can further automate the user experience while increasing accuracy. We believe machine learning will change the way businesses protect sensitive data. Those that don't embrace this will miss a critical opportunity to accelerate their adoption of a successful data protection strategy.

5. Fewer resources and less time. Organisations worldwide grapple with finding skilled security professionals, which hinders the ability to deploy new strategies and technologies. Additionally, security and IT professionals are responsible for myriad projects and activities, leaving little time to ensure end-users are consistently applying and adhering to data protection and security policies.

Machine learning offers a new way of thinking about data protection

Deploying machine learning as a part of an organisation's overall data protection strategy can provide the critical assistance users need to apply the proper safeguards to data they've created without adding friction to their day-to-day activities. For organisations ready to adopt a more mature machine learning posture, end-users could be removed from the equation while increasing confidence in the organisation's ability to identify, contextualise and protect critical data.

TITUS's award-winning TITUS Intelligent Protection enables organisations using the company's industry-leading TITUS Classification Suite and TITUS Illuminate solutions the ability to build and deploy machine learning capabilities based on company-specific data protection needs while providing additional consistency and accuracy to data security efforts.

Additional resources:
* Learn more about: TITUS Intelligent Protection
* Blog post: "Machine Learning: Data Protection's Next Frontier"
* Blog post: "When it Comes to Data Protection, Should You Crowdsource Your Security?"
* Blog post: "Machine Learning and Its Impact on How We Work"


TITUS is a leader in providing solutions that enable businesses to accelerate their adoption of data protection. The company's products enable organisations to discover, classify, protect, analyse and share information. With an open, intelligent policy manager, TITUS customers are also able to address regulatory compliance initiatives and get more out of their existing security investments, including data loss prevention (DLP), cloud access broker (CASB), encryption, and next-generation firewall (NGFW) solutions. Millions of users in over 120 countries trust TITUS to keep their data compliant and secure, including some of the largest financial institutions and manufacturing companies in the world, government and military organisations across the G-7 and Australia, and Fortune 2000 companies. More information is available at

Private Protocol

Private Protocol is a data security provider offering solutions and strategies that cover mobile device and information security, secure data collaboration, secure messaging, SharePoint/O365 security and compliance, data classification, file share security and compliance, Web content compliance, data leakage prevention, endpoint security and cloud security. Private Protocol also offers cloud risk assessments, so companies can understand the impact cloud is having on their business and highlight any risk that may be associated. Private Protocol covers Africa and the Indian Ocean Islands and has a distributed partner channel.

Web site:

Editorial contacts
Private Protocol Sales
Have your say
Facebook icon
Youtube play icon